Numerical evaluation of Wiener integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Evaluation of Wiener Integrals

Here, Jc F[x]w(dx) denotes the Wiener integral, and / F[0(u, ■ )]v(du) denotes an integral over some Euclidean space. In [1] Cameron determined a pair (v, 0) by imposing on (1.2) the condition that the formula be exact for polynomial functionals of degree ^3. Imposing the same requirement, Vladimirov [5] constructed a family of pairs (v, 6). In this paper we shall develop a class of approximati...

متن کامل

Numerical Evaluation of Diffraction Integrals

This paper describes a simple numerical integration method for diffraction integrals which is based on elementary geometrical considerations of the manner in which different portions of the incident wavefront contribute to the diffracted field. The method is applicable in a wide range of cases as the assumptions regarding the type of integral are minimal, and the results are accurate even when ...

متن کامل

Series expansion of Wiener integrals via block pulse functions

In this paper, a suitable numerical method based on block pulse functions is introduced to approximate the Wiener integrals which the exact solution of them is not exist or it may be so hard to find their exact solutions. Furthermore, the error analysis of this method is given. Some numerical examples are provided which show that the approximation method has a good degree of accuracy. The main ...

متن کامل

Numerical Evaluation of Multiple Integrals I

Introduction. Several specific methods for numerical evaluation of integrals over higher dimensional regions have been proposed. James Clerk-Maxwell [_1 j proposed the formulas for the rectangle and the rectangular parallelopipedon in 1877. Appell, Burnside, Ionescue, and Mineur have developed special formulas for planar regions. Tyler [2] recently gave formulas for rectangles, parabolic region...

متن کامل

Half-numerical evaluation of pseudopotential integrals

A half-numeric algorithm for the evaluation of effective core potential integrals over Cartesian Gaussian functions is described. Local and semilocal integrals are separated into two-dimensional angular and one-dimensional radial integrals. The angular integrals are evaluated analytically using a general approach that has no limitation for the l-quantum number. The radial integrals are calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1967

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1967-0221753-0